
SHARP PC-1600 
Modular Extension Platform - MEP

rev2 Manual



MEP Application 1 
USB-Stick Interface



MEP Application 2
USB-Keyboard Interface



Table of Contents
Generic MEP Features...........................................................................................................5
Application Usage – USB-Stick Interface..............................................................................6

LED Indicators...................................................................................................................6
Standard BASIC File Commands......................................................................................7
Directories – An Additional BASIC Command...................................................................8
Assembler Programming - IOCS File API..........................................................................9

Application Usage – USB-Keyboard Interface.....................................................................10
LED Indicators.................................................................................................................10
Mapping of Special PC-1600 Keys..................................................................................11
Country Specific Keymaps...............................................................................................11
USB-Keyboard – Block Diagram & Message Flow.........................................................13
USB-Keyboard - Known Issues.......................................................................................14

MEP Assembly Instructions.................................................................................................15
Backend...........................................................................................................................15
USB-Frontend..................................................................................................................16
Tests.................................................................................................................................17

Programming Guide.............................................................................................................18
Applications and Subapplications....................................................................................18
Microcontroller Programming (Backend).........................................................................19
EEPROM Programming (Backend).................................................................................19
PLD Programming (Backend)..........................................................................................19
USB-Host Programming (Frontend)................................................................................20

Developers Guide................................................................................................................21
Copyright..............................................................................................................................21
Contact.................................................................................................................................21



Generic MEP Features

• Modular design with exchangeable frontend hardware. UART Rx/Tx communication
between frontend and backend.

• Backend: 

◦ ATmega328P microcontroller with I/O-port communication (INP/OUT) to the PC-
1600 with preloaded application code

◦ 28C256 EEPROM with socket. Preloaded PC-1600 ROM extension

◦ 22V10C PLD with socket. Preloaded addressing: ROM extension at #7,&4000, 
microcontroller port: &90

◦ Onboard SPI socket for programming of the microcontroller

◦ Compatible 60pin bus connector.

• USB-Frontend: 

◦ Hobbytronics USB-Host Controller with preloaded application

• Compatibility: Only SHARP PC-1600. 

PC-1500/A not supported – do not connect the module to a PC-1500/A !



Application Usage – USB-Stick Interface

In the following the terms USB-stick and flash drive are used synonymously.

When the MEP comes configured with this app, the module works as a USB flash drive 
interface that fully integrates with the PC-1600 operating system by providing a native file 
device named "S3:" or "Y:"  respectively.

So this MEP app provides a seamless data and program exchange between a PC/MAC 
and the PC-1600 as well as a mass storage capability for the PC-1600.

This USB-stick interface app has been tested with different products with different 
USB standards (2.0, 3.0). However the USB-frontend relies on certain timings, so if 
you use very old or very slow USB-sticks, it may  be possible that you experience 
read or write errors. USB 2.0 flash drives are recommended.

Before using this MEP app you need to format the flash drive with FAT32 
(recommended) or exFAT. Depending on the capacity of the flash drive you need to 
partition it first, since these file systems do not support large memory capacities.

It is highly recommended to plug/unplug flash drives only when the PC-1600 and 
therefore the MEP is powered off. If the red LED is blinking after hot-plugging or 
unplugging the USB-stick, you definitely need to turn the computer off. 
In the worst case the computer could crash or  read or write errors may occur.
In that case you must perform a reset of the PC-1600.
If you avoid hot-plugging/unplugging of flash drives  to/from the MEPs USB-port  
the system will always behave stable.

Assure that the SPI-programming jumper is attached to the backend (see Backend).

Assure that the switch at the frontend is in postion "SDO" (see USB-Frontend). 

Carefully connect the assembled module (i.e. backend + USB frontend) to the PC-1600 
60pin bus connector on the left side. Connect a formatted USB-stick and switch the 
computer on.

LED Indicators
Here is the meaning of the LEDs for the USB-stick interface app on the top of the USB-
frontend:



Standard BASIC File Commands
You can now use the following standard BASIC file commands to access the connected 
flash drive. Instead of the device name S3 you can use Y as well:

• FILES"S3:"
FILES"S3:<search-pattern>"
Search patterns may include wildcards *,?
Examples: FILES"S3:"  FILES"S3:*.BAS"  FILES"S3:A*.???"

• [B]SAVE"S3:<filename>"[,A]
Examples: SAVE"S3:TEST.BAS",A  BSAVE"S3:TEST.BIN",...

• [B]LOAD"S3:<filename>"
Examples: LOAD"S3:TEST.BAS"  BLOAD"S3:TEST.BIN"

• COPY"<device>:<filename>"TO"<device>:<filename>" 
S3 can be used as source- or target-device name or both
Examples:
COPY"S3:TEST.BAS"TO"S2:TEST.BAS"
COPY"S2:TEST.BAS"TO"S3:TEST.BAS"
COPY"S3:TEST.BAS"TO"S3:TEST1.BAS"

• KILL"S3:<filename>"
Example: KILL"S3:TEST.BAS"

• NAME"S3:<old-filename>"AS"S3:<new-filename>"
Example: NAME"S3:TEST.TXT"AS"S3:TEST.BAS"

• OPEN"S3:<filename>" FOR [OUTPUT|INPUT] AS #<fileno>
PRINT#<fileno>,<data>
INPUT#<fileno>,<variables>
CLOSE#<fileno>
Example:
10 OPEN "S3:MYFILE1.TXT"FOR INPUT AS #1
20 OPEN "S3:MYFILE2.TXT"FOR OUTPUT AS #2
30 INPUT #1,I$:PRINT #2,I$
40 CLOSE #1:CLOSE #2

The following BASIC file commands are not supported by this MEP app. If you use them 
with the device names "S3:" or "Y:" they yield  an ERROR 158.

• DSKF"S3:"
SET"S3:<filename>",["P" | " "]
OPEN"S3:<filename>" FOR APPEND AS #<fileno>

Of course you can access the files on the USB-stick via a PC or MAC too (read & write).

A minor restriction of this MEP app is the fact, that only one file for read and one for write 
can be open simultanously. Setting the PC-1600 system variable MAXFILES to higher 
values than 2 has no effect on S3.

This MEP app is restricted to the 8.3 (FAT) file format like the PC-1600. Avoid longer file 
and directory names and usage of special characters or spaces.

You can operate the MEP flash drive interface app with the CE-1600P and CE-1600F, but 
then the device name "Y:" refers to the CE-1600F.



Directories – An Additional BASIC Command

When this app is installed on the MEP it provides an additional, non-standard BASIC 
command that gives access to (sub-)directories on the connected flash drive: CDIR (i.e. 
"change directory").

The syntax is:

CDIR"<path>"

There is no specification of a device since this command only operates on S3.

Like the FILE command the CDIR command outputs information to the LCD-display. In 
this case it's the prompt which tells the current selected (sub-)directory in UNIX-like 
notation.

Examples:
Here S3 is assumed to be the device name of the flash drive, assigned when formatted.
Furthermore this example is a sequence of commands, starting in the root directory.

Command Semantics Prompt

CDIR"." Show current dir (here: root) S3:/>
CDIR"UTIL" Relative path, one dir down S3:/UTIL>
CDIR"../GAMES" One dir up, one down S3:/GAMES>
CDIR"/DEV/ASM" Absolute path, two dirs down S3:/DEV/ASM>
CDIR".." One dir up S3:/DEV>
CDIR"/" Absolute path to root S3:/>

The selected directory however acts like a context for the standard BASIC file commands 
(see above). So if you navigate to different directories on the flash drive, the FILE 
command will report the content of that directory only. This context concept holds for all 
standard BASIC commands and the IOCS file routine (see Assembler Programming - 
IOCS File API), since the PC-1600 operating system has no notion of  directories. In 
consequence you cannot e.g. LOAD from a different directory than the currently selected 
one (e.g. LOAD"S3:/UTIL/TEST.BAS"  is not possible).

This isolation of the directory concept from the PC-1600 OS is very important to maintain 
compatibility with existing PC-1600 programs and the OS itself. Consequently 
(sub-)directories are not 'seen' by the FILE command.

The directory structure itself has to be created on a modern computer, but the MEP flash 
drive app can navigate through that structure with the aid of  the CDIR command.

So you can use a USB-stick as a structured mass storage for the PC-1600 !



Assembler Programming - IOCS File API

The MEP flash drive app provides a ROM extension for the PC-1600. This extension 
registers to the standard  IOCS file routine of the PC-1600. In fact this is the only 
mandatory integration  with the PC-1600 OS that has to be implemented by a PC-1600 
peripheral file device. All standard BASIC file commands rely on that very same IOCS file 
routine, which is a very elegant and open design by the SHARP engineers of the 1980's.

By the way, this hooking to the standard IOCS file routine is the foundation of compatibility 
with existing PC-1600 file browser applications like DiskWorks (DW.BIN), which you can 
find here: https://www.sharp-pc-1600.de/Down_Maschine.html).

DiskWorks has no notion of a device called "S3:" but it can access "Y", which is the 
alternative name for the MEP file device :-)

The API of the standard IOCS file routine is a CALL to a specific ROM address:

FILE &01DE

Parameters: C-reg: function code, DE-reg: FileControl Block (FCB) pointer
Function codes:

&0F OPEN FILE
&10 CLOSE FILE
&11 SEARCH FIRST
&12 SEARCH NEXT
&13 DELETE FILE
&14 SEQUENTIAL RD
&15 SEQUENTIAL WR
&16 CREATE FILE
&17 RENAME FILE

In order to access the MEP app through this API you need to set the 4-byte device name 
(FDVNO0..3) of the FCB to "S3  " or "Y   " respectively.

For further information about the IOCS file API and the structure of the FCB please refer to
the PC-1600 Technical Reference chapters 3.3.1 and 3.3.2:
https://www.sharp-pc-1600.de/PDF/PC1600TechnicalReference.pdf

It is also possible to CALL the core of the CDIR command (see above), which is of course
not part of the standard IOCS file routine:

CDIR #7,&4020

Parameters: DE-reg: path string, B-reg: size of path string
Returns: prompt string at &FB10,  C-flag: success/error, BASIC error no in &F89B

The prompt string is limited to 26 characters (i.e. one LCD display line) and is terminated 
by CR (i.e. &0D).

https://www.sharp-pc-1600.de/Down_Maschine.html
https://www.sharp-pc-1600.de/PDF/PC1600TechnicalReference.pdf


Application Usage – USB-Keyboard Interface

When the MEP comes configured with this app, the module works as a USB keyboard 
interface for US, German and French standard keyboard layouts. 

• Keyboard compatibility: Tested with Logitech standard keyboard layouts (US, 
German, French). Also tested with Microsoft wireless keyboard with USB-dongle.

Assure that the SPI-programming jumper is attached to the backend (see Backend).

Assure that the switch at the frontend is in postion "LED" (see USB-Frontend).

The key mapping can be switched by a BASIC-command. Additionally the default keymap 
can be selected at startup via a specific hardware setting.  

Carefully connect the assembled module (i.e. backend + USB-frontend) to the PC-1600 
60pin bus connector on the left side. Connect a USB-keyboard and switch the computer 
on.

You can now input characters on the native PC-1600 keyboard as well as on the 
connected USB-keyboard. Set the appropriate keymap for your keyboard (see Country 
Specific Keymaps).

LED Indicators
Here is the meaning of the LEDs for the USB-keyboard interface app on the top of the 
USB-frontend:



Mapping of Special PC-1600 Keys
All country specific keyboard mappings share the same mapping for the PC-1600 special 
keys. This is as follows:

The special keys SHIFT, AltGr and CAPS-Lock on the USB-keyboard are not mapped 
directly to SHARP-keys but behave as usual, so they access the (country specific) 
respective SHIFT/AltGr-characters on the keyboard. Modifier keys, that are supposed to 
add an accent to the next character typed, are also working (as far as the PC-1600 code 
page supports the modified character).

Country Specific Keymaps
In order to change the country specific keymap, the modules ROM provides a respective 
BASIC-command. Type:

KBRD"US" to activate the keymap for a US keyboard layout

KBRD"DE" to activate the keymap for a German keyboard layout (QWERTZ)

KBRD"FR" to activate the keymap for a French keyboard layout (AZERTY)



The default at startup is the US keymap. This can be changed via a hardware bridge, that 
you can add to the backend:

The "red" bridge (German keymap) pulls Inp0 to GND, while the "blue" bridge (French 
keymap) pulls Inp1 to GND. You can solder a fixed wire bridge to the backend or connect a
DIP-switch, if you want a more flexible solution. 
Be careful to not accidentally bridge other or multiple pins.



USB-Keyboard – Block Diagram & Message Flow

The following diagram gives on overview of the functional blocks and the message flow 
starting from a key press on the USB-keyboard up to displaying the respective character at
the PC-1600 display:



USB-Keyboard - Known Issues

Due to the fact that the USB host (frontend) sends US-keycodes only and the country 
specific mapping to PC-1600 key codes has to be done in the backend, there are some 
key codes that are indistinguishable or conflicting for German and French keyboard 
layouts. This leads to some minor restrictions and workarounds.

US-keyboard layout:

• No issues.

German keyboard layout:

• ° mapped to ' (indistinguishable key codes)

• ä,ö,ü not sensitive for caps lock mode

• Numpad calculation keys (/,*,-,+)  mismapped (don't use)

French keyboard layout:

• * mapped to 3 (indistinguishable key codes). Workaround: AltrGr-$ mapped to *

• F3 mapped to } (indistinguishable key codes)

• Numpad mismapped (don't use)



MEP Assembly Instructions
The following sections just show the respective results – this does not imply a 
recommendation for the component soldering order.

Backend

The PLCC sockets can either be soldered by soldering paste and hot air or by cutting off 
carefully the socket center plate and soldering the pins with a fine tip. In the latter case you
can glue the center plate afterwards to the PCB like shown.



USB-Frontend



Tests
You can test the MEP backend and frontend separately.

The first and absolute mandatory test after assembly is to check for short circuits 
between VCC and GND in both the backend and the frontend:

USB-Frontend Test

If the keyboard subapp is installed on the frontend, you can test it by connecting an FTDI 
cable to your PC/MAC like shown in the section USB-Host Programming (Frontend). Start 
a terminal application (e.g. hterm or CoolTerm) and connect with the virtual COM-port of 
the FTDI cable. 

In the terminal application set baudrate:9600, data:8, stop:1, parity:none.

Now connect an USB keyboard to the MEP frontend and type. You should see the 
respective key codes in the receive data window of the terminal app.

EEPROM and PLD Test (Backend)

A simple test for the PLD and the EEPROM would be to read the first two bytes of the 
ROM extension, which are constant for every PC-1600 ROM extension.

Connect the backend (only) to the PC-1600, switch the computer on and type:

HEX$(PEEK#(7,&4000))

This command must return 43

HEX$(PEEK#(7,&4001))

This command must return 16



Programming Guide
In this document the term programming refers to flashing pre-built, compiled software 
components to the MEP hardware. In contrast the term development refers to the process 
of creating such compiled software components, that form an application.

Applications and Subapplications
An application (app) for the MEP typically consists of two to four separate software 
components (subapps) that reside in different hardware components of the MEP, but can 
interact with each other. These subapps have to be programmed separately and by 
different means, which are described in the following sections.

Subapplication MEP Hardware Description

Peripheral ROM 
Extension 

EEPROM
(Backend)

Compiled Z80-assembler code. 
Provides a PC-1600 ROM extension header and
optionally a peripheral interrupt handler, device 
I/O routines as well as a specific BASIC token 
table for the app. 
The ROM extension code is called by the PC-
1600 OS and must follow its conventions.

Peripheral Data I/O Microcontroller
(Backend)

Compiled C code for the ATmega328P.
Provides port I/O communication with the PC-
1600 (INP, OUT commands). 
So this subapp is responsible for data exchange
between the MEP and the PC-1600.
On the other end it provides UART-
communication with an arbitrary frontend via the
Rx/Tx lines. In addition it can raise a peripheral 
interrupt request for the PC-1600.

USB Driver USB Host
(USB Frontend)

Compiled USB subapp from hobbytronics (e.g. 
keyboard driver, flash-driver, mouse-driver etc.)
This 3rd party subapp communicates via UART 
with the Peripheral Data I/O component that 
resides in the MEP backend.

Adressing
(mandatory)

PLD
(Backend)

Compiled boolean adressing logic for 
Programmable Logic Devices (PLD).
This subapp is mandatory and needs only to be 
changed, if a non-default addressing is required.
The defaults are:
Start address for the ROM extension: #7,&4000
Port address for data I/O: &90

A typical interaction between a ROM extension and a data I/O subapp would be, that the 
ROM extensions reads and/or writes data from/to the I/O port and integrates with the PC-
1600 OS. So this is control flow from the ROM extension to the data I/O subapp. The other
way round would be a peripheral interrupt request, that can be raised from the data I/O 
subapp, which in turn leads to a call of a respective ROM extension routine, called by the 
PC-1600 OS. For an example see USB-Keyboard – Block Diagram & Message Flow.



Microcontroller Programming (Backend)
The onboard microcontroller is an ATmega328P. It can be programmed via the onboard 
SPI header and a respective development board. I recommend the AVR dragon togeher 
with AtmelStudio 7 (or above). The onboard ATmega328P does not come preinstalled with 
an Arduino bootloader.

The SPI header signal names are printed on the PCB. These are:

VTG, MISO, MOSI, SCK, GND, RST.

Don't forget to put the SPI# jumper back in place after programming!

EEPROM Programming (Backend)
The EEPROM is a 28(H)C256 (e.g. Atmel or Xicor). For programming you need a PLCC32
to DIP/DIL28 adaptor and a common EPROM burner that supports this chip family.

PLD Programming (Backend)
The PLD is either a GAL22V10C (Lattice) or an ATF22V10C (Atmel). In order to program 
the chip you need a PLCC28 to DIP/DIL24 adaptor and an burning device that is capable 
of flashing these types of ICs. Typically you wouldn't need a reprogramming of the PLD, 
unless you want to change the default addresses (#7,&4000 for the ROM extension and 
&90 as the I/O-port address of the ATmega328P as viewed from the PC-1600).



USB-Host Programming (Frontend)
The embedded USB-host IC is a PIC24FJ32GA002 microcontroller with a bootloader and 
application software from https://www.hobbytronics.co.uk/

In order to configure this IC or flash it with a different application provided by the 
manufacturer you need an FTDI USB to UART cable (5V), like shown.

Use the backend connector of the MEP frontend for connection. The frontend signal 
names are printed to the PCB:

FTDI Signal MEP Frontend Signal

VCC (5V) VCC

GND GND

RXD TXD

TXD RXD

For the actual programming or configuration process, as well as available applications for 
the embedded USB-host, please consult the manufacturers website:

https://www.hobbytronics.co.uk/usb-host/usb-host-soic

https://www.hobbytronics.co.uk/usb-host/usb-host-soic
https://www.hobbytronics.co.uk/


Developers Guide

Please contact the author for specific infos or colaboration.

Copyright
The software components installed on the modules backend when delivered are the 
interlectual property of the author and may not be published or sold separately.

(c) spellbound, 2022

Contact
www.silicium.org/forum -> PM to user spellbound

http://Www.silicium.org/forum

	Generic MEP Features
	Application Usage – USB-Stick Interface
	LED Indicators
	Standard BASIC File Commands
	Directories – An Additional BASIC Command
	Assembler Programming - IOCS File API

	Application Usage – USB-Keyboard Interface
	LED Indicators
	Mapping of Special PC-1600 Keys
	Country Specific Keymaps
	USB-Keyboard – Block Diagram & Message Flow
	USB-Keyboard - Known Issues

	MEP Assembly Instructions
	Backend
	USB-Frontend
	Tests
	USB-Frontend Test
	EEPROM and PLD Test (Backend)


	Programming Guide
	Applications and Subapplications
	Microcontroller Programming (Backend)
	EEPROM Programming (Backend)
	PLD Programming (Backend)
	USB-Host Programming (Frontend)

	Developers Guide
	Copyright
	Contact

